Prediksi Jumlah Kasus Penyakit Diare Menggunakan Metode Triple Exponential Smoothing (TES)

Indra Indra, Nurdina Rasjid

Abstract


Disease problems are one of the main factors in efforts to improve public health. This is because the number of patients continues to grow and even has an impact on death if it is not treated immediately so that preparation is needed to deal with the situation of increasing the number of cases. One of the endemic diseases that often occurs in Indonesia is diarrhea. The number of cases of diarrhea that occurs has the potential to be an extraordinary event so it deserves special attention. Prediction or forecasting is an effort to find out when a spike in cases will occur so that it can be anticipated early. This study aims to predict the number of cases of diarrhea disease that occurs using the Triple Exponential Smoothing method. The data used in this study is in the form of time series data obtained from the Majene Regional General Hospital for four years in the 2015-2018 period. Based on the results of tests carried out with an optimum alpha value of 0.097, the Triple Exponential Smoothing method is effective in forecasting or predicting the number of cases of diarrhea disease with a MAPE value of less than 10%.


Keywords


forecasting, triple exponential smoothing, penyakit, pengenalan pola

Full Text:

PDF (Indonesian)

References


Abdullah, Alfiah, Andani Achmad, dan Supriadi Sahibu. (2021). Media Pembelajaran Interaktif Mata Kuliah Pemrograman Web Berbasis Android. Jurnal Teknologi Informasi dan Komunikasi (Inspiration). Vol 11, No. 1. (https://jurnal.akba.ac.id/index.php/inspiration/article/view/2626/203, diakses pada 12 September 2021)

Azman Maricar, M. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem dan Informatika (JSI), Vol. 13, No. 2, Mei 2019.

Fitria, V.A dan Hartono, R. 2017. Peramalan Jumlah Penumpang pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing (online). Vol.11 No.1 (https://jurnal.stmikasia.ac.id/index.php/jitika/article/view/35)

Gusfadilah, A., Setiawan, B.D dan Rahayudi, B. 2019. Implementasi Metode Exponential Smoothing untuk Prediksi Bobot Kargo Bulanan di Bandara Internasional I Gusti Ngurah Rai (online). Vol.3 No.2 (http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4598)

Harlina, Sitti dan Usman. 2020. Analisa Prediktif Curah Hujan Data Time series berbasis Metode Neural Network. Jurnal Teknologi Informasi dan Komunikasi (Inspiration). Vol 10, No. 2. (https://jurnal.akba.ac.id/index.php/inspiration/article/view/2586/169, diakses pada 12 September 2021)

Indriana Yusuf, Feby dan Hilda Anjasari, Dwi. 2019. Metode Triple Exponential Smoothing Holt-Winters untuk Peramalan Jumlah Wisatawan Nusantara di Kabupaten Banyuwangi. Jurnal UJMC, Volume 4, Nomor 2, Hal. 1 -6. ( http://e-jurnal.unisda.ac.id/index.php/ujmc/article/view/1107/814)

S. Madianto, E. Utami, and A. Hartanto, “Algoritma Triple Exponential Smoothing Untuk Prediksi Trend Turis Pariwisata Jatim Park Batu Saat Pandemi Covid-19”, JAIC, vol. 5, no. 1, pp. 58-63, Jul. 2021.

Saragih, V dan Silitonga, P. 2019. Penerapan Triple Exponential Smoothing pada Sistem Peramalan Jumlah Mahasiswa Baru (online). Vol.4 No.1 (http://103.76.21.184/index.php/JTIUST/article/viewFile/509/544, diakses 10 November 2019)

Sasmito, G.W. 2017. Penerapan Metode Waterfall pada Desain Sistem Informasi Geografis Industri Kabupaten Tegal. Jurnal Informatika : Jurnal Pengembangan IT (JPIT), Vol.2, No.1 (diakses tanggal 20 november 2020)

Sitorus, R.2019. Peramalan Jumlah Produksi Obat Batuk Menggunakan Metode Double Exponential Smoothing Brown pada P.T. Mutiara Mukti Farma Tahun 2019. Skripsi. Sumatera Utara: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara


DOI http://dx.doi.org/10.35585/inspir.v11i2.2649
Abstract 334 kali dilihat
PDF (Indonesian) 234 kali diunduh

Refbacks

  • There are currently no refbacks.



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.