Peramalan Jumlah Titik Api Pada Lahan Gambut Kalimantan Menggunakan Model Zero-Inflated Poisson Regression

Muhammad Alkaff, Andry Fajar Zulkarnain, ‪Nurul Fathanah Mustamin, Nandang Eko Yulianto

Abstract


Forest fires are a global problem that often occurs in Indonesia, especially during the dry season. One indication of forest fires is the occurrence of hotspots. Monitoring of hotspots is part of the effort to make early warnings of the dangers of forest fires. The island of Kalimantan is an island where most of the land consists of peatlands and is prone to hotspots. The hot, dry season due to sunlight and the lack of rainfall can make peatlands a fire-prone area. This study uses the Zero-Inflated Poisson Regression model to predict the number of hotspots on peatlands by considering climatic factors, namely sun exposure and rainfall. This research was conducted in four square areas (Area-1, Area-2, Area-3, Area-4) with the Tjilik Riwut Meteorological Station as the center point. The study uses hotspot monitoring data from the Terra Satellite owned by NASA (the National Aeronautics and Space Administration) and climate data in the form of data on sun exposure and rainfall from the BMKG (Meteorology, Climatology, and Geophysics Agency). The results show that the Zero-Inflated Poisson Regression model can model the four observed areas quite well with an RMSE of 12.69 in Area-1, Area-2 with an RMSE value of 10.05, RMSE of 11.53 in Area-3, and finally Area-4 with an RMSE value of 16.40.


Keywords


Hotspots, Forest Fire, Peatlands, Climate, Zero-Inflated Poisson Regression

Full Text:

PDF (Indonesian)

References


Adinugroho, W. C., Suryadiputra, I. N., Saharjo, B. H., & Siboro, L. (2005). Panduan Pengendalian Kebakaran Hutan Dan Lahan Gambut (Proyek Cli). Wetland International - Indonesia Programme dan Wildlife Habitat.

Alkaff, M., & Yulianto, N. E. (2019). Prediksi Jumlah Kejadian Titik Api Melalui Pendekatan Deret Waktu Menggunakan Model Seasonal Arima. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 3(2), 54–63. https://doi.org/10.31961/ELTIKOM.V3I2.122

Dzikrulloh, A. (2012). Distribution Patterns Of Hotspot As An Indicator Of Fire On Peatland In Riau Province. http://repository.ipb.ac.id/handle/123456789/60307

Fittriyah, N., Hadi, A. F., & Dewi, Y. S. (2014). Pemodelan Jumlah Kematian Akibat Difteri di Provinsi Jawa Timur dengan Regresi Binomial Negatif dan Zero-Inflated Poisson. Prosiding Seminar Nasional Matematika, November, 201–214.

Kusuma, W., Komalasari, D., & Hadijati, M. (2013). Model Regresi Zero Inflated Poisson Pada Data Overdispersion. Jurnal Matematika, 3(2), 71–85.

Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1. https://doi.org/10.2307/1269547

Pambudi, R. A., Setiawan, B. D., & Wijoyo, S. H. (2018). Implementasi Fuzzy Time Series Untuk Memprediksi Jumlah Kemunculan Titik Api. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 4767–4776.

Putu, N., Dewanti, P., Ayu, G., & Srinadi, M. (2016). Perbandingan Regresi Zero Inflated Poisson (ZIP) Dan Regresi Zero Inflated Negative Binomial (ZINB) Pada Data Overdispersion (Studi Kasus: Angka Kematian Ibu di Provinsi Bali). E-Jurnal Matematika, 5(4), 133–138. https://doi.org/10.24843/MTK.2016.V05.I04.P132

Rasyid, F. (2014). Permasalahan dan Dampak Kebakaran Hutan. 4, 47–59.

Vema Aisyah Rahma. (2019). Perbandingan Generalized Poisson Regression Dan Conway-Maxwell Poisson Regression Pada Kasus Difteri Di Jawa Timur Tahun 2016. http:///lib.unair.ac.id

Wibowo, A. (2009). Peran Lahan Gambut dalam Perubahan Iklim Global. Jurnal Tekno Hutan Tanaman, 2 No.1, 19–28.

Yogi, I. (2014). Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (ZST) (Studi Kasus : Sub DAS Siak Hulu). Jurnal Online Mahasiswa (JOM) Bidang Teknik Dan Sains, 1(1), 1–18. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/3705

Zubaidah, A., Vetrita, Y., & Khomarudin, M. . R. (2014a). Validasi Hotspot MODIS Di Wilayah Sumatera Dan Kalimantan Berdasarkan Data Penginderaan Jauh SPOT-4 Tahun 2012. Jurnal Penginderaan Jauh, 11(No. 1 Juni 2014), 1–15.

Zubaidah, A., Vetrita, Y., & Khomarudin, M. R. (2014b). Validasi Hotspot MODIS Di Wilayah Sumatera Dan Kalimantan Berdasarkan Data Penginderaan Jauh SPOT-4 Tahun 2012 (Modis Hotspot Validation Over Sumatera And Kalimantan Based On Remote Sensing Data Spot-4 In 2012). Jurnal Penginderaan Jauh Dan Pengolahan Data Citra Digital, 11(1). http://jurnal.lapan.go.id/index.php/jurnal_inderaja/article/view/2085


DOI http://dx.doi.org/10.35585/inspir.v11i2.2664
Abstract 96 kali dilihat
PDF (Indonesian) 45 kali diunduh

Refbacks

  • There are currently no refbacks.



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.