Pembentukan Thesaurus yang Sensitif Terhadap Tingkat Polaritas Review Pada Cross-Domain Sentiment Classification

Putu Praba Santika, Agus Zainal Arifin, Diana Purwitasari

Sari


Ketidaksesuaian antara isi opini dan rating yang diberikan pada review produk mungkin terjadi karena diberikan secara terpisah. Pendekatan Machine Learning dapat dilakukan untuk klasifikasi sentimen yang terdapat pada opini untuk mendapatkan rating. Idealnya classifier dilatih dengan data yang sudah diketahui polaritasnya dari domain yang sama dengan domain yang akan diuji, sehingga diperlukan data latih tersendiri. Pelabelan secara manual pada pembuatan data latih sangat menghabiskan waktu dan biaya. Untuk menghidari pelabelan secara manual, dilakukan dengan pendekatan cross-domain sentiment classification.
Pendekatan ini hanya membedakan polaritas opini menjadi positif dan negatif. Hal ini menyebabkan kerancuan, sehingga perlu digunakan rentang nilai untuk menunjukkan tingkat polaritas suatu opini. Penelitian ini bertujuan untuk mengusulkan pendekatan pengukuran tingkat polaritas review pada cross-domain sentiment classification agar dapat melakukan klasifikasi pada domain yang berbeda. Metode yang digunakan adalah membuat thesaurus yang sensitif terhadap tingkat polaritas sentimen digunakan dalam features expansion untuk menambahkan feature baru pada Review. Review yang sudah ditambah feature baru digunakan pada training dan testing.
Hasil pengujian menunjukkan bahwa rata-rata akurasi pada pengujian cross-domain sentiment classification yang menerapkan features expansion dengan memanfaatkan thesaurus yang sensitif terhadap sentiment 8.17% lebih baik dari pada yang tidak menerapkan features expansion. Penelitian ini membuktikan bahwa klasifikasi pada domain yang berbeda dapat dilakukan dengan menerapkan features expansion dengan memanfaatkan thesaurus yang sensitif terhadap tingkat polaritas sentiment.

Teks Lengkap:

PDF
DOI http://dx.doi.org/10.35585/inspir.v5i2.69
Sari 1166 kali dilihat
PDF 697 kali diunduh

Refbacks

  • Saat ini tidak ada refbacks.



Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial-BerbagiSerupa 4.0 Internasional.